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Abstract

We study self-contact phenomena in elastic rods that are constrained
to lie on a cylinder. By choosing a particular set of variables to describe
the rod centerline the variational setting is made particularly simple: the
strain energy is a second-order functional of a single scalar variable, and the
self-contact constraint is written as an integral inequality.

Using techniques from ode theory (comparison principles) and varia-
tional calculus (cut-and-paste arguments) we fully characterize the struc-
ture of constrained minimizers. An important auxiliary result states that the
set of self-contact points is continuous, a result that contrasts with known
examples from contact problems in free rods.

Key words. elastic rods, calculus of variations, constrained minimization,
self-contact, comparison principle.
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1. Introduction

The study of self-contact in elastic rods has seen some remarkable progress
over the last ten years, with highlights such as the numerical work of To-
bias, Coleman, and Swigon [22,6,5], the introduction of global curvature
by Gonzalez and co-workers [10], and the derivation of the Euler-Lagrange
equations for energy minimization by Schuricht and Von der Mosel [19].
Parallel advances have been made on the highly related ideal knots and
Gehring links, where ropelength is minimized instead of elastic energy [4,
18,3].
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Despite this progress important questions remain open. We are still far
from understanding analytically the solutions of the Euler-Lagrange equa-
tions for general contact situations. Even if we limit ourselves to global
minimizers of an appropriate energy functional, we can prove little about
the form of solutions as soon as contact is taken into account.

For instance, a long-standing conjecture for closed elastic rods is that
in the limit of long rods under constant twist the global energy minimizer
should be a ply (double helix) with a loop on each end. If a structure of this
type is assumed, then the limiting pitch angle can be determined [21]; but
the difficult part actually consists in showing that global minimizers have
this structure. Incidentally, since local minimizers of different type have
been found numerically [6,5], the restriction to global minimizers appears
to be essential.

This example is typical for the current state of understanding: if assump-
tions are made on the set of contacts, then characterizations are possible [8,
20,21,12], but for unrestrained geometry little is known rigorously. It shows
how our lack of understanding of energy minimizers is intimately linked to
the lack of knowledge about structure of the contact set. Examples show
that this structure can be non-trivial: for instance, non-contiguous contact
appears at the end of a ply in an elastic rod [5].

In this paper we study a problem of self-contact of an elastic rod in
which the rod has reduced freedom of movement: the centerline of the rod
is constrained to lie on the surface of a cylinder (Figure 1). In contrast to the
full three-dimensional problem referred to above, the reduced dimensionality
of this problem enables us to give a near-complete characterization of global
minimizers, without making any a priori assumptions on the structure of the
contact set. Notwithstanding this, determining the structure of the contact
set is a central element of this paper.

ζ(x)

x

contact point

Fig. 1. The centerline of a rod on a cylinder is described using cylindrical coordi-
nates: the independent variable x is the tangential coordinate, and the position of
the centerline is given by the function ζ(x) measuring distance along the cylinder
axis.

We transform the classical Cosserat model of an elastic, unshearable rod
of circular cross-section into a more convenient form. The functional that
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is to be minimized (representing stored energy and work done by the end
moment) is

F (u) =

∫ T

0

[ a(u)u′
2
+ b(u) ] ,

where

a(u) =
1

4π2

1

(1 + u2)5/2
and b(u) =

1

r2(1 + u2)3/2
− 2M

Br

√
1 + u2 − u√

1 + u2
.

(1)
Here r is the radius of the cylinder, M the moment applied to the end of
the rod, and B is the bending coefficient of the rod. The centerline of the
rod is characterized by ζ(x), which measures distance along the cylinder
axis as a function of a tangential independent variable x. The unknown in
this minimization problem is the derivative u(x) = ζ′(x), which may by
thought of as the cotangent of the angle between the centerline tangent
and the cylinder axis; u is zero when the rod curls around the cylinder
orthogonal to the axis, and u = ±∞ when the rod is parallel to the axis.
This transformation is detailed in Section 3.

The most interesting part of the variational problem is the transformed
contact condition (condition of non-self-penetration). In this paper we take
the thickness of the rod to be zero; then the non-self-penetration condition
is

∫ x+1

x

u ≥ 0 for all 0 ≤ x ≤ T − 1, (2)

where the interval [x, x + 1] corresponds to one full turn around the cylin-
der; this condition formalizes the intuitive idea that non-self-penetration is
equivalent to the condition ‘that the rod remain on the same side of itself’.
This condition on umakes the variational problem a non-local obstacle prob-
lem. Non-zero thickness requires a contact condition that is substantially
more involved than (2); we comment on this situation in Section 3.5.

Both the background in rod theory and the independent mathematical
context of this minimization problem raise questions about the solutions:

1. Do solutions exist?
2. What is the minimal, and what is the maximal regularity of minimizers?
3. When is there contact, i.e., when is the contact set

ωc :=

{

x ∈ [0, T − 1] :

∫ x+1

x

u = 0

}

(3)

non-empty?
4. Given that ωc 6= ∅, what is the structure of ωc? Is the contact simply

contained in a single interval, or is the structure more intricate, as in
the examples of contact–skip–contact at the end of a ply [6] and in a
(ropelength minimizing) clasp [3]?

5. What form do the contact forces take?
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6. Does the solution inherit the symmetry of the formulation? This is the
case for a symmetric rod on a cylinder without contact condition [11],
but need not be true when taking contact into account.

In the rest of this paper we address these questions.

2. Results

The first main result of this investigation (Theorem 1) shows that the
contact condition (2) is essential: without this condition the centerline of
a rod will intersect itself. A little experiment with some string wrapped
around a pencil will convince the reader that this is the case. We also prove
the regularity result that a constrained minimizer u is of class W 2,∞, and
we derive the Euler-Lagrange equation

N(u)(x) := −2a(u(x))u′′(x) − a′(u(x))u′
2
(x) + b′(u(x)) =

∫ x

x−1

f, (4)

where the Lagrange multiplier f is a non-negative Radon measure with
support contained in the contact set ωc (Theorem 2).

From stationarity alone, which is the basis of Theorem 2, the character-
ization of f as a positive Radon measure appears to be optimal; no further
information can be extracted. In Section 7 we use two different additional
assumptions to further characterize the contact set and subsequently the
measure f . In both cases we obtain the important result that the contact
set is a (possibly empty) interval and that the measure f is a sum of Dirac
delta functions, as represented schematically in Figure 2. The weighting of
the delta functions is shown in the middle of Figure 2: there is a linear
decrease or increase in weight from one side of the contact set to the other
(Theorem 3). Since f may be interpreted as the contact force, we deduce
that

– The contact force is concentrated in at most two tangential positions x1

and x2, and in integer translates of x1,2;
– The magnitude of the contact force is maximal at the contact point

where the rod lifts off, and decreases linearly with each turn. Figure 3
graphically illustrates this behaviour.

The decrease in contact force with each turn can be understood in the
following way. The difference between the contact forces on either side of
the rod creates a resulting force exerted on the rod, and the two resultant
forces that act at x1,2 mod 1 point in opposite directions. If we imagine a
single, closed ring with two forces acting on it in this way, the two forces
create a moment that will bend the ring. This also happens with the coil of
the current problem, as is demonstrated by the small but definite oscillations
in the numerical solutions calculated in Section 9.
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Fig. 2. The function g(x) =
∫

x

x−1
f is piecewise constant (top); the jumps cor-

respond to Dirac delta functions in f (middle). Note that the support of g is the
set ωc + [0, 1] by the definition of g. The solution u corresponding to f and g is
shown at the bottom.

Fig. 3. A typical rod configuration (left; front and back views) that minimizes
energy and satisfies the contact condition. On the right the bars indicate the con-
tact forces corresponding to the arrows in Figure 2. (The analysis of this paper
assumes zero rod thickness—in this picture the rod has been fattened for presen-
tation purposes.)

As mentioned above, the crucial result that the contact set is connected
requires additional assumptions. If we step back from this rod-on-cylinder
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model, and allow a and b to be general given functions, then for a large class
of such functions the nonlinear operator on the left-hand side of (4) N(u)
satisfies a version of the comparison principle,

Nu1 ≥ Nu2 =⇒ u1 ≥ u2,

(see Definition 2 for the precise statement). For such functions a and b, any
stationary point has a connected contact set (Theorem 4). The argument
is based on the observation that non-contact in some interval (α, β) implies
that f = 0 on (α, β) and therefore that the right-hand side of (4),

g(x) =

∫ x

x−1

f, (5)

is non-increasing on (α, β) and non-decreasing on (α − 1, β − 1).
Importantly, however, the functions a and b given in (1) are such that

the associated operator mostly fails to satisfy this comparison principle.
We therefore also take a different approach, in which we obtain the same
result by only considering global minimizers. Here we use a different argu-
ment, based on constructing other minimizers by cutting and pasting; the
combined condition of minimization and non-contact in an interval (α, β)
implies the existence of additional regions of non-contact outside of the in-
terval (α, β), implying that the right-hand side of (4) is constant on (α, β).
From this the result follows (Theorem 5).

In both cases, the fact that the contact set is an interval implies that the
boundary of the contact set is ‘free’—the measure f is zero on an additional
interval of length one extending on both ends of ωc. This implies that the
right-hand side g is increasing and decreasing at the same time—except
at points that lie at integer distance from the two boundary points. This
imposes the specific structure on g and f that is shown in Figure 2.

The issue of symmetry of minimizers is a subtle one, which again de-
pends on the presence or absence of a comparison principle. The compari-
son principle simplifies the structure of solutions: all stationary points are
symmetric (up to an unimportant condition on b). Without a comparison
principle, and more precisely when minimization of F favours oscillation,
this is no longer true, and even stationary points that are global minimizers
may be asymmetric (Section 8).

Using the characterization of f and g derived earlier we use two nu-
merical methods to investigate constrained minimizers (Section 9); one is a
method of direct solution, using a boundary-value solver, and the other a
continuation method. A typical solution is shown in Figure 3.

The simple structure of the functional and the contact condition suggest
that the methods and results of this paper might be applicable to other
systems than this particular rod-on-cylinder model. We therefore state and
prove our results for general functions a and b. The main requirements
are that a and b are smooth and that a is positive; other conditions are
mentioned in the text below.
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3. Problem setting: derivation of the rod-on-cylinder model

3.1. Kinematics

Consider an elastic rod of circular cross-section that is constrained to lie
on a cylinder, and which is subject to a force T and a momentM at the ends.
We assume that at the rod ends, T , and M are maintained parallel to both
the axis of the cylinder and the axis of the rod, but that the loading device
leaves the rod ends free to rotate around the circumference of the cylinder;
the ends of the rod therefore need not be coaxial. The rod is naturally
straight and inextensible, and material cross-sections are assumed to remain
orthogonal to the centerline. We will derive a minimization problem for rods
of length 2ℓ and later take the limit ℓ→ ∞.

In the Cosserat rod theory [1, Ch. VIII] the configuration of this rod is
characterized by a right-handed orthogonal rod-centered coordinate frame
of directors, {d1,d2,d3}, each a function of the arc-length parameter s.
The director d3 is assumed parallel to the centerline tangent, and by the
assumption of inextensibility the centerline curve r satisfies

ṙ = d3,

where the dot denotes differentiation with respect to arc length. The strain
of the rod is characterized by the vector-valued function u given by

ḋk = u × dk, k = 1, 2, 3.

When decomposed as u = κ1d1 + κ2d2 + τd3, the components may be
recognized as the two curvatures κ1,2 and the twist τ .

We choose a fixed frame of reference {e1, e2, e3}, where e3 is parallel to
the cylinder axis, and we relate the frame {d1,d2,d3} to this frame by a
particular choice of Euler angles {θ, ψ, φ} [14,11]. In this parametrization θ
is the angle between d3 and e3 (or between the centerline and the cylinder
axis), ψ characterizes the rotation around the cylinder axis, and φ is a
partial measure of the rotation between cross-sections. The condition that
the centerline of the rod lie on the surface of a cylinder of radius r translates
into the kinematic condition

ψ̇ =
1

r
sin θ, (6)

where the dot denotes differentiation with respect to the arclength coor-
dinate s. Note that it is natural not to restrict ψ to an interval of length
2π. In terms of the remaining degrees of freedom {θ, φ} the curvatures and
twist are given by

κ1 = θ̇ sinφ− 1

r
sin2 θ cosφ,

κ2 = θ̇ cosφ+
1

r
sin2 θ sinφ,

τ = φ̇+
1

r
sin θ cos θ.



8 Van der Heijden, Peletier, and Planqué

3.2. Energy, work, and a variational problem

For a given rod the strain energy is given by [14],

E(θ, τ) =
B

2

∫ ℓ

−ℓ

(κ2
1 + κ2

2) +
C

2

∫ ℓ

−ℓ

τ2

=
B

2

∫ ℓ

−ℓ

θ̇2 +
B

2r2

∫ ℓ

−ℓ

sin4 θ +
C

2

∫ ℓ

−ℓ

τ2.

Here B and C are the bending and torsional stiffnesses respectively. To
determine the work done by the tension and moment at the ends of the
rod we need to characterize the generalized displacements associated with
these generalized forces. For the tension T the associated displacement is
the shortening S,

S(θ) =

∫ ℓ

−ℓ

(1 − cos θ).

The generalized displacement associated with the moment M is the end
rotation, which is well-defined by the assumption of constant end tangents.
It is common to identify the end rotation with a link-like functional

L =

∫ ℓ

−ℓ

(φ̇+ ψ̇) = [φ+ ψ]ℓ−ℓ.

As demonstrated in [13], this identification is correct in an open set around
the undeformed configuration θ ≡ 0, but loses validity when |θ| takes values
larger than π. Although nothing we have seen suggests that in an energy-
minimizing situation θ would take values outside of the admissible interval
(−π, π), we have no rigorous argument to guarantee that θ remains inside
that interval, and therefore we are forced to assume this. In terms of the
variables θ and τ this functional then takes the form

L(θ, τ) =

∫ ℓ

−ℓ

(

τ +
1

r
sin θ(1 − cos θ)

)

.

Here we assume rigid loading in shortening and dead loading in twist,
i.e. we prescribe the shortening S and the moment M , which implies that
the tension T and the end rotation L are unknown and to be determined
as part of the solution. This loading condition leads to the minimization
problem

min {E(θ, τ) −ML(θ, τ) : S(θ) = σ}
for given σ > 0. The tension T has a natural interpretation as a Lagrange
multiplier associated with the constraint of S.

We can simplify this minimization problem by first minimizing with
respect to τ for fixed θ, from which we find τ ≡ M/C; re-insertion yields
the final minimization problem

min {F (θ) : S(θ) = σ} (7)
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with

F (θ) =
B

2

∫

θ̇2 +
B

2r2

∫

sin4 θ − M

r

∫

sin θ(1 − cos θ). (8)

We are interested in localized forms of deformation, in which the defor-
mation is concentrated on a small part of the rod and in which boundary
effects are to be avoided, and therefore we take an infinitely long rod and
consider θ, F , and S to be defined on the whole real line and assume θ → 0
as |s| → ∞.

3.3. Behaviour of minimizers

The Euler-Lagrange equations associated with the minimization prob-
lem (7) can be written as a Hamiltonian system with one degree of freedom,

1

2
θ̇2 + V (θ) = H, (9)

for a particular V . In this system two independent parameters remain, which
may be interpreted as a scaled cylinder radius r̃ = rM/B and a combined
loading parameter m = M/

√
BT .

Solutions of the original minimization problem are orbits of this Hamil-
tonian system that are homoclinic to zero, and such orbits have been studied
in detail in [11]. Among the findings are

1. For all values of r̃ ranges of m exist with orbits that are homoclinic to
the origin;

2. At some parameter points these homoclinic orbits ‘collide’ with saddle
points. The saddle points correspond to helical solutions (constant angle
θ) and close to these collisions the homoclinic orbit has a large region of
near-constant angle θ.

In Figure 4 a bifurcation diagram is shown with two such collisions, one at
a forward helix (0 < θ < π/2, at m = mc2

) and one at a backward helix
(π/2 < θ < π, at m = mc1

).
In [11] the question of stability of these solutions, both local and global,

was left untouched. If we interpret the combined load parameter m as
a (reciprocal) tension T (with the moment M fixed) then the nature of
the bifurcation diagram in Figure 4, involving as it does the mechanically
conjugate variables S and T , suggests that in each peak the right curve is
locally stable [15]. With two peaks occurring however, this does not allow
us to predict where the globally stable solution is located.

In this paper we focus on global energy minimization. Corollary 1 be-
low states that for sufficiently large shortening, and when contact effects
are neglected, global energy minimizers always intersect themselves. It is
this result that forms the main motivation of the analysis of this paper:
since energy minimization without appropriate penalization leads to self-
intersection, the non-self-intersection condition is necessary for physically
acceptable solutions.
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Fig. 4. A load-displacement diagram showing shortening d = SM/B of station-
ary points as a function of the (combined) load m (from [11]). Contact effects are
not taken into account. The peaks divide this diagram into three sections. The
solutions in the middle section intersect themselves, whilst the solutions on the
right do not. The section on the left consists of heteroclinic connections between
θ = 0 and θ = 2π which are not considered here. For sufficiently large shortening,
the rod configuration that has lowest energy is on the self-penetrating branch, as
shown by Corollary 1.

3.4. Translation to (u, ψ)-coordinates

To study the case in which self-contact is taken into account, it is neces-
sary to properly restrict the class of admissible functions in the minimisation
problem (7). In three dimensions a variety of different descriptions of self-
contact exists for rods of finite thickness, each with subtle advantages and
disadvantages (see e.g. the introduction of [10]). For a rod on a cylinder
the situation is simpler, since the freedom of movement is essentially two-
dimensional—similar to that of a curve in a plane. We focus on rods of
zero thickness, and implement non-self-penetration as non-self-intersection
of the centerline. In terms of the unknown θ(·) as introduced above, this
condition can be written as

z(s1)− z(s2) 6= 0 for all s1 6= s2 with ψ(s1)−ψ(s2) = 0 mod 2π,
(10)

where we have used the previous equation (6) for ψ and the axial coordinate
z:

ψ̇ =
1

r
sin θ, ż = cos θ.

We now make the assumption that z can be written as a function of ψ, or,
equivalently, that ψ is monotonic along the rod. This assumption is satisfied
for solutions of the problem without contact having θ < π, as given by
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equation (9). If we include a contact condition of the form (10), then we are
unable to prove that ψ is monotonic, and in fact it is conceivable that this
monotonicity is only valid for global energy minimizers.

Under the assumption that z can be written as a function of ψ, we intro-
duce a dimensionless axial coordinate ζ = z/r, and write ′ for differentiation
with respect to ψ. The functional F in (8) then transforms to

F (ζ) =
Br

2

∫ T

0

ζ′′
2

(1 + ζ′2)
5

2

+
B

2r

∫ T

0

1

(1 + ζ′2)
3

2

−M

∫ T

0

√

1 + ζ′2 − ζ′
√

1 + ζ′2
,

with shortening

S(ζ) = r

∫ T

0

[

√

1 + ζ′2 − ζ′
]

.

Here [0, T ], the domain of definition of ψ, is a priori unknown, since the
ends of the rod are free to move around the cylinder.

In these variables non-self-intersection is easily characterized. Since ψ is
monotonic, let us assume it to be increasing (this amounts to an assumption
on the sign of the applied moment M). Admissible functions are defined by
the following condition:

∀ψ ∈ [0, T − 2π] : ζ(ψ + 2π) − ζ(ψ) ≥ 0. (11)

Note that it is only necessary to rule out self-intersection after a single
turn; if contact exists after multiple turns, contact also exists (potentially
elsewhere) after a single turn.

The contact condition (11) is the novel part in this variational prob-
lem. In this paper we focus on the effect that this condition has on the
minimization problem, and therefore simplify by

– fixing the domain size T , and accordingly removing the shortening con-
straint;

– replacing the mechanically correct boundary conditons ζ′ = ∞ by a
more convenient condition ζ′ = 1.

In terms of the new variables x = ψ/2π and u(x) = ζ′(ψ) we recover the
problem of the introduction.

These boundary conditions can be described as follows. By prescribing
ζ′ = u = 1 at the ends of the rod we fix the angle between the rod and
the centerline to π/4. By removing the shortening constraint we allow the
ends of the rod to move freely in the axial direction; in contrast, the fixing
of T prevents the rod ends from moving tangentially. We believe that these
changes have little effect on that part of the rod that is implicated in the
contact problem; but this is a topic of current research.



12 Van der Heijden, Peletier, and Planqué

3.5. Zero thickness

The assumption of zero rod thickness can not be relaxed without intro-
ducing important changes in the formulation (see Figure 5). At thickness ǫ,
the distance in the ζ-direction between two parallel consecutive centerlines
in contact is ǫ/ sin θ, where θ is the angle between the centerlines and the
cylinder axis. Therefore non-zero thickness can not be introduced by simply
replacing the right-hand side in (11) by ǫ; the angle of the centerlines is to
be taken into account, implying that the right-hand side of (11) will depend
on ζ′.

To make matters worse, when the centerlines are not parallel, i.e. when
u = ζ′ is not constant, the minimal-distance connection between two consec-
utive turns depends on values of ζ′ nearby (see [16] for a thorough treatment
of the geometry of this issue); it is not clear whether for the present case
of a rod on a cylinder any simpler impenetrability condition can be found
than the well-known global curvature condition [10].

ǫ

ǫ

ǫ

sin θ θ

Fig. 5. Two configurations of a rod of thickeness ǫ. This illustrates that for rods
with positive thickness one cannot simply replace the contact condition Bu ≥ 0
by Bu ≥ ǫ; a more involved condition is necessary.

4. Existence and the contact condition

In this section we state precisely the problem under discussion and show
that minimizers exist. We also study the minimization problem without the
contact constraint, and show that minimizers will intersect themselves.

Let U = 1 + X , where X = H1
0 (0, T ), and Y = C([0, T − 1]). Let the

functional F : U → R be defined as in the Introduction,

F (u) =

∫ T

0

[ a(u)u′
2
+ b(u) ],

and introduce the constraint operator B : U → Y given by

B(u)(x) =

∫ x+1

x

u.
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With the set of admissible functions given as

K := {u ∈ U : B(u)(x) ≥ 0 ∀x ∈ [0, T − 1]}

the central problem is

Problem (A): Find a function u∗ ∈ U such that

F (u∗) = min{F (u) : u ∈ K}.

We first prove existence of minimizers for Problem (A).

Lemma 1. Let T > 0. Assume that a(u) ≥ a0 > 0, and that b(u) is Lips-
chitz continuous. Then there exists u∗ ∈ K such that

F (u∗) = min{F (u) : u ∈ K }.

Proof. Let {un} ⊂ K ⊂ U be a minimizing sequence. We first prove that
∫

b(un) is bounded from below.
Since minimization of F is equivalent to minimization of F − Tb(0), we

can assume without loss of generality that b(0) = 0. Using the Lipschitz
continuity of b and the Poincaré inequality we have

‖b(un)‖L1 ≤ c‖un‖L1 ≤ c1(T + ‖un − 1‖L1) ≤ c(1 + ‖u′n‖L2).

Here and below c is a possibly changing constant that does not depend on
n. Then

∫

b(un) ≥ −c(1 + ‖u′n‖L2)

≥ −c
(

1 +
1

a0

(

∫

a(un)u′n
2
)

1

2

)

≥ −c
(

1 +
1

a0

(

F (un) −
∫

b(un)
)

1

2

)

≥ −c
(

1 +
1

a0

(

c−
∫

b(un)
)

1

2

)

.

Hence
∫

b(un) ≥ −D (12)

for a suitable constant D.
Together with the boundedness of F (un), (12) implies that un is bounded

in X . Hence {un} contains a subsequence {unm
} that converges weakly in

X to a limit u∗. Since F is lower semicontinuous with respect to weak
convergence,

F (u∗) ≤ lim inf
m→∞

F (unm
),

implying that u∗ is a minimizer.
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As we mentioned in Section 3, if contact is not taken into account—if
F is minimized in U rather than in the smaller set K—condition. In the
theorem below we actually prove a stronger statement. We write FT instead
of F to indicate explicitly the dependence on the interval [0, T ].

Theorem 1 (Minimization without contact condition). Assume that
a and b are of class C1, and that a is strictly positive. Assume that some
ū < 1 exists such that

−∞ < inf
R

b < inf
u≥ū

b. (13)

For each T > 0, let uT be a minimizer corresponding to the minimization
problem on domain [0, T ],

min{FT (u) : u ∈ U}. (14)

Then there exists c > 0 independent of T such that

|{x ∈ [0, T ] : uT (x) ≥ ū}| ≤ c
(

1 +
√
T

)

.

The function b given in (1) achieves its minimum at u = −∞, regardless
of the value of Mr/B; therefore it satisfies the condition (13) for every
ū < 1.

Corollary 1 (Minimizers violate the contact condition). In addition
to the conditions of Theorem 1, assume that ū < 0. If T is sufficiently large,
then B(uT )(x) < 0 for some x ∈ [0, T − 1].

Proof (Proof of Theorem 1). We first use a standard argument to give
an upper bound on the energy FT (uT ). Choose a T -dependent constant
uT < ū such that

b(uT ) < inf
u≥ū

b(u) and 0 < b(uT ) − inf
R

b ≤ T−1/2.

For any T ∈ R
+ we construct a new continuous symmetric function ũT ∈ U

such that ũT = uT on [1, T − 1], and FT (ũT ) ≤ C + Tb(u), where C does
not depend on T . Since uT minimizes FT , it also follows that

FT (uT ) ≤ FT (ũT ) ≤ C + Tb(uT ). (15)

Among other things this inequality implies that for large T a minimizer uT

can not be the constant function 1.
The Euler-Lagrange equation associated with this minimization problem

is
−2a(u)u′′ − a′(u)u′

2
+ b′(u) = 0, (16)

which can also be written als a one-degree-of-freedom Hamiltonian system

−a(u)u′2 + b(u) = H. (17)

It follows that for any minimizer u,
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1. b(u(x)) = H at any stationary point x of u;
2. b(u(x)) ≥ H for all x ∈ [0, T ];
3. b(1) > H .

The third statement follows from noting that if b(1) = H then u ≡ 1 would
be the unique solution of (17).

We now show that any minimizer u is bi-monotonic, i.e. increasing or
decreasing away from a minimum or maximum. Suppose instead that u
has two internal stationary points, a minimum at x1 and a maximum at x2;
assume for definiteness that 0 < x1 < x2 < T . Note that u(x1) < 1 < u(x2),
since the solution of the Hamiltonian system is a periodic orbit oscillating
between the values u(x1) and u(x2); the inequality u(x1) < 1 < u(x2)
follows from the boundary condition. Now pick a point x12 ∈ (x1, x2) such
that u(x12) = 1.

Construct a new function

ũ(x) =











u(x) 0 ≤ x ≤ x1

u(x1) x1 ≤ x ≤ x1 + T − x12

u(x− T + x12) x1 + T − x12 ≤ x ≤ T

Then

FT (ũ) =

∫ x1

0

[ a(u)u′
2

+ b(u) ] +

∫ x1+T−x12

x1

b(u(x1)) +

∫ x12

x1

[ a(u)u′
2

+ b(u) ]

=

∫ x12

0

[ a(u)u′
2
+ b(u) ] +

∫ x1+T−x12

x1

b(u(x1))

=

∫ x12

0

[ a(u)u′
2
+ b(u) ] +H(T − x12)

< FT (u).

Therefore the assumption of two stationary points is contradicted. Note that
by (17) the solution also is symmetric in [0, T ].

We now return to the sequence of functions uT . Setting A = {x ∈ [0, T ] :
uT (x) ≥ ū} we have

C + Tb(uT ) ≥ FT (uT )

≥ |A| inf
u≥ū

b(u) + (T − |A|) inf
R

b

= |A|
(

inf
u≥ū

b(u) − inf
R

b
)

+ T inf
R

b,

so that

|A|
(

inf
u≥ū

b(u) − inf
R

b
)

≤ C + T
(

b(uT ) − inf
R

b
)

≤ c (1 +
√
T ).

This concludes the proof.

Remark 1. By a very similar argument one may show the following state-
ment: if minR b is uniquely achieved at some ū ∈ R, then

‖uT − ū‖L∞(
√

T,T−
√

T) −→ 0 as T −→ ∞.
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5. The Euler-Lagrange equation

We characterize the duality (X,X ′) by identifying the smooth functions
on [0, T ] with a dense subset of X ′ via the duality pairing

X′〈ξ, x〉X =

∫ T

0

ξx.

Similarly we identify Y ′ with the space of Radon measures RM([0, T − 1])
via the same duality pairing, defined for smooth functions,

Y ′〈η, y〉Y =

∫ T

0

ηy.

Where necessary, we extend Radon measures in Y ′ by zero outside of their
domain [0, T − 1].

Theorem 2. Assume that a and b are globally Lipschitz continuous, and
that a ≥ a0 > 0. Let u ∈ U be a solution of Problem (A). Then u ∈
W 2,∞(0, T ) and there exists a Radon measure f ∈ Y ′ such that

−2a(u(x))u′′(x) − a′(u(x))u′
2
(x) + b′(u(x)) =

∫ x

x−1

f(s) ds (18)

for almost every x ∈ (0, T ). Moreover f ≥ 0 and supp f ⊂ ωc.

Definition 1. A function u ∈ U is called a stationary point if it there exists
a Radon measure f ∈ Y ′, with f ≥ 0 and supp f ⊂ ωc, such that (18) is
satisfied.

In the rest of the paper we will often drop the arguments in (18) and write

−2a(u)u′′ − a′(u)u′
2
+ b′(u) =

∫ x

x−1

f.

The proof of Theorem 2 follows along the lines of [2]. We fix the function
u, with contact set ωc defined in (3), and introduce the cone of admissible
perturbations V ,

V := {v ∈ X : ∃{εn}n∈N ⊂ R
+, εn → 0 such that B(u+εnv) ≥ 0 ∀n ∈ N}.

Lemma 2. Let u be a minimizer. Then F ′(u) · v ≥ 0 for all v ∈ V .

Proof. For any v ∈ V , the fact u is a minimizer implies that

F (u+ εnv) − F (u) ≥ 0 for all n ∈ N.

The conditions on a and b imply that F is Fréchet differentiable in u (this
follows from the conditions on a and inspection of (20) below), so that

0 ≤ F (u + εnv) − F (u) = εnF
′(u) · v + o(εn||v||X),

from which it follows that F ′(u) · v ≥ 0. Now, given any v ∈ V , take a
sequence vm ⊂ V that converges to v in X . Since F ′(u) : X → R is a
continuous linear operator, F ′(u) · vm → F ′(u) · v. Hence F ′(u) · v ≥ 0 for
any v ∈ V .
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V can be characterized in a more convenient way:

Lemma 3. For any u ∈ K,

V = W := {v ∈ X : Bv ≥ 0 on ωc}.
We postpone the proof to the end of this section.

V is a closed convex cone, with dual cone

V
⊥

= {γ ∈ X ′ : 〈γ, v〉 ≥ 0 ∀v ∈ V }.
Let

P = {y ∈ Y : y ≥ 0 on ωc}.
This also is a closed convex cone, with dual cone

P⊥ = {f ∈ Y ′ : 〈f, y〉 ≥ 0 ∀y ∈ P}.
Lemma 4. If f ∈ P⊥, then supp f ⊂ ωc and f ≥ 0.

Proof. Given any y with support in ωc
c , y ∈ P and −y ∈ P . Hence 〈f, y〉 = 0

and therefore supp f ⊂ ωc. Now take y ∈ Y positive. Then in particular
y ≥ 0 on ωc, and y ∈ P . By definition of P⊥ this implies f ≥ 0.

We now use the following Lemma to characterize V
⊥

in a different way.

Lemma 5. Let Y be a Banach space, and P ⊂ Y a closed convex cone with
dual cone P⊥. Let X be a second Banach space, and A : X → Y a bounded
linear operator. Let K be the following cone in X:

K = {u ∈ X : Au ∈ P}.
Then the dual cone K⊥ can be characterized by

K⊥ = {AT g ∈ X ′ : g ∈ P⊥}.
The proof of this Lemma can be found in [2]. An immediate consequence

of Lemma 5 is

Corollary 2.

V
⊥

= {BT f ∈ X ′ : f ∈ P⊥}.
We now turn to the proof of the main theorem of this section.

Proof (Proof of Theorem 2). We have seen that, since u is a minimizer,

F ′(u) ∈ V
⊥

and
V = {v ∈ X : B(v) ≥ 0 on ωc},

by Lemmas 2 and 3. By Corollary 2 there exists an f ∈ P⊥ such that
F ′(u) = BT f , and by Lemma 4 supp f ⊂ ωc and f ≥ 0. The conjugate
operator BT is easily seen to be given by

BTφ(x) =

∫ x

x−1

φ(s) ds (19)
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for a smooth function φ ∈ Y ′, where φ is implicitly extended by zero outside
of the interval [0, T − 1]. We use the same notation for a general Radon
measure f ∈ Y ′.

Lastly, direct computation gives

F ′(u) · v =

∫ T

0

[

2a(u)u′v′ + a′(u)u′
2
v + b′(u)v

]

, (20)

and hence we obtain the equation

−2[a(u(x))u′(x)]′ + a′(u(x))u′(x)2 + b′(u(x)) =

∫ x

x−1

f (21)

in the sense of distributions.
We now turn to the statement of regularity. Since f ∈ RM([0, T − 1]),

the function g (defined in (5)) is uniformly bounded. Since all terms in (21)
except the first are in L1(0, T ), we have a(u)u′ ∈ W 1,1, and the lower
bound on a implies that u ∈ W 2,1(0, T ). Since W 2,1 ⊂ W 1,∞, the second
term is now known to be in L∞, and again the lower bound on a is used to
obtain u ∈ W 2,∞(0, T ). This regularity of u implies that the distributional
equation (21) is also satisfied almost everywhere.

We still owe the reader the proof of Lemma 3.

Proof (Proof of Lemma 3). V ⊂ W : Since B : X → Y is continuous,
W is closed, and therefore it suffices to show that V ⊂W . Take any v ∈ V
and x ∈ ωc. Then B(u + εnv)(x) ≥ 0, and by definition of ωc, Bu(x) = 0,
implying that Bv(x) ≥ 0. It follows that v ∈W .

W ⊂ V : First consider w ∈ W such that supp (Bw)− (the support of
the negative part of Bw) is contained in ωc

c . We claim that w ∈ V , for which
we have to show that there exists

{εn} ⊂ R
+, εn → 0, such that B(u+ εnw) ≥ 0 ∀n ∈ N.

For x ∈ ωc, Bu(x) = 0, and since Bw(x) ≥ 0 we have B(u+ εnw)(x) ≥
0 for any sequence {εn} ⊂ R

+. For the complement ωc
c , note that since

supp (Bw)− is compact and contained in the open set ωc
c, there exists δ > 0

such that Bu ≥ δ > 0 on supp (Bw)−. Hence, if εn ≤ δ ‖Bw‖−1
L∞ , then

Bu+εnBw ≥ 0 on supp (Bw)−. Note that Bu ≥ 0 on [0, T−1], and Bw ≥ 0
on (supp (Bw)−)c. This means that Bu + εnBw ≥ 0 on ωc

c. Together with
Bw ≥ 0 on ωc, this implies w ∈ V .

Finally, consider a general w ∈ W . Fix a smooth function φ ∈ X with
φ > 0 on (0, T ); note that Bφ ≥ c > 0. We approximate w by the function
wε := w+εφ. We claim that supp (Bwε)− ⊂ ωc

c for sufficiently small ε > 0.
It then follows that wε ∈ V and wε → w, implying that w ∈ V .

To prove the claim, note that w ∈ X ⊂ L∞. Hence Bw is Lipschitz
continuous, with Lipschitz constant 2||w||L∞ . Hence, for small enough ε,

Bwε(x) = Bw(x) + εBφ(x)

≥ Bw(y) + εBφ(y) − 3||w||L∞ |x− y|. (22)
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Suppose Bwε(x) < 0 and y ∈ ωc. Then Bw(y) ≥ 0, and by (22),

−εBφ(y) > −3||w||L∞ |x− y|,

or

|x− y| > εBφ(y)

3||w||L∞

.

Therefore d(supp (Bw)−, ωc) > Cε for a suitable C > 0. Hence supp (Bwε)−
⊂ ωc

c for small enough ε, which proves the claim.

6. Characterization of stationary points

For this section we assume that the conditions of Theorem 2 are met.

Lemma 6. Let u be a stationary point, and let g be defined as in (5).

1. For all x ∈ ωc, u(x) = u(x+ 1) and u′(x) ≤ u′(x+ 1).
2. If ωc contains an interval [x0, x1], then

– u′(x) = u′(x + 1) for all x ∈ (x0, x1);
– u′′(x) = u′′(x+ 1) and g(x) = g(x+ 1) for almost all x ∈ (x0, x1).

This lemma imposes an interesting form of periodicity on the solution
and the right-hand side g. Although the constraint is a non-local one, on
an interval of contact of length L the solution actually only has the degrees
of freedom of an interval of length one; the other values follow from this
assertion.

Proof. Since x ∈ ωc,
∫ x+1

x

u = 0.

Hence, since Bu(x) =
∫ x+1

x u ∈ W 3,∞, and Bu ≥ 0,

0 =
d

dx

∫ x+1

x

u = u(x+ 1) − u(x),

and

0 ≤ d2

dx2

∫ x+1

x

u = u′(x+ 1) − u′(x).

If Bu = 0 on [x0, x1], then the inequality above becomes an equality a.e. on
the interior (x0, x1), implying that

u′(x) = u′(x+ 1) on (x0, x1).

The periodicity of u′′ and g now follow from (18).
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Lemma 7. Let u be a stationary point, and assume that ωc contains an
interval I. Then

∫ x+1

x

g

is constant on Int I.

Proof. By Lemma 6 u(x) = u(x + 1) for all x ∈ I, and u′′(x) = u′′(x + 1)
a.e. on I. In addition, u′(x) = u′(x+ 1) for all x ∈ Int I. Hence

x 7→
∫ x+1

x

[

−2a(u)u′′ − a′(u)u′
2

+ b′(u)
]

(23)

is constant on I. But by (18), (23) is equal to

∫ x+1

x

∫ s

s−1

f =

∫ x+1

x

g.

The following two lemmas and the theorem that follows are essential
in determining the structure of the right-hand side g and therefore of the
measure f . The main argument is the following. The function g has no reason
to be monotonic; its derivative in x equals f(x) − f(x − 1), and although
f is a positive measure this difference may be of either sign. However, if
for instance a left end point x0 of ωc is flanked by a non-contact interval
(x0 − 1, x0), then the measure f is zero on that interval, and the function
g is non-decreasing on (x0, x0 + 1). It is this argument, repeated from both
sides, that allows us to determine completely the structure of the function
g and the underlying measure f .

Notation Let [x0, x1] ⊂ ωc. Define

p ≡ x1 − x0 (mod 1), (24)

and

P = min{n ∈ N : n ≥ x1 − x0}. (25)

Throughout the rest of this paper τ is the translation operator defined
by

(τu)(x) = u(x+ 1). (26)

Lemma 8. Let u be a stationary point, such that ωc contains an interval
[x0, x1]. Assume furthermore that

supp f ∩ (x0 − 1, x0) = ∅. (27)

Then

1. if x1 − x0 ∈ N, then g does not decrease on each of the subintervals

(x0 + i, x0 + i+ 1), i = 0, 1, . . . , P ;
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2. if x1 − x0 6∈ N, then g does not decrease on each of the subintervals

(x0 + i, x0 + i+ 1), i = 0, 1, . . . , P − 1,

nor does it on

(x0 + P, x1 + 1).

Proof. On (x0, x0 + 1),

g′ = f − τ−1f
(27)
= f ≥ 0,

and therefore g is non-decreasing on (x0, x0 + 1). By Lemma 6, g(x) =
g(x + 1) for almost all x ∈ (x0, x1). This implies that on each consecutive
interval (x0 + i, x0 + i + 1), i = 1, . . . , P − 1, g does not decrease. By the
same reasoning, if x1−x0 ∈ N, then this also holds for (x0 +P, x0 +P+1) =
(x1, x1 + 1). If not, then it holds for (x0 + P, x1 + 1).

Remark 2. Let u be a stationary point. Define the mirror image v(x) =
u(T − x), and h(x) = f(T − x− 1). Then (v, h) solves

{

−2a(v)v′′ − a′(v)v′
2
+ b′(v) =

∫ x

x−1 h,

v(0) = v(T ) = 1,

and hence is also a stationary point.

Applying Lemma 8 to (v, h) yields for (u, f):

Lemma 9. Let u be a stationary point such that ωc contains an interval
[x0, x1]. Assume furthermore that

supp f ∩ (x1 + 1, x1 + 2) = ∅.

1. if x1 − x0 ∈ N, then g does not increase on each of the subintervals

(x0 + i, x0 + i+ 1), i = 0, 1, . . . , P ;

2. if x1 − x0 6∈ N, then g does not increase on each of the subintervals

(x0 + p+ i, x0 + p+ i+ 1), i = 0, 1, . . . , P − 1,

nor does it on

(x0, x0 + p).

To combine the previous two Lemmas, let

Xi = x0 + i, i = 0, . . . , P,

Yi = x0 + p+ i, i = 0, . . . , P.
(28)
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Theorem 3. Let u be a stationary point such that the contact set ωc con-
tains an interval [x0, x1]. Suppose that

supp f ∩
{

(x0 − 1, x0) ∪ (x1 + 1, x1 + 2)
}

= ∅.

Then there exists G ∈ R such that

1. if x1 − x0 ∈ N, then g ≡ G on (x0, x1 + 1), and

f |(x0−1,x1+2) = G

P
∑

i=0

δ(x−Xi).

2. if x1 − x0 6∈ N, then

g(x) =

{

g1 on [Xi, Yi], i = 0, . . . , P,

g2 on [Yi, Xi+1], i = 0, . . . , P − 1,
(29)

and

f |(x0−1,x1+2) =

P−1
∑

i=0

aiδ(x−Xi) + biδ(x− Yi),

where ai = (G− i
P )g1 and bi = G+i

P g1, and

g1 :=
GP

P + 1 − p
∈

( PG

P + 1
, G

)

, (30)

g2 :=
G(P + 1)

P + 1 − p
=
P + 1

P
g1 ∈

(

G,
(P + 1)G

P

)

. (31)

Proof. (1) x1 − x0 ∈ N.
By Lemma 8, g does not decrease on the intervals (Xi, Xi+1), i =

0, 1, . . . , P , and by Lemma 9 g does not increase on these intervals either.
Hence g is constant on each interval. By Lemma 7 the constant is the same
on each interval, i.e. that g ≡ G on (x0, x1 + 1). This also implies that
within the interval (x0 − 1, x1 + 2), f can only have support in the points
x0 = X0, X1, . . . , XP = x1, yielding the formula for f in the statement of
the theorem.

(2) x1 − x0 6∈ N.
Combining Lemma 8 and 9, we find that g is constant on each interval

(Xi, Yi) and (Yi, Xi+1), i = 0, 1, . . . , P − 1, and on (XP , YP ). By Lemma
6, g(x) = g(x + 1) for almost all x ∈ (x0, x1), and hence g takes three
values, 0, and g1 and g2 (say) on (x0, x1 +1). We choose g = g1 on (Xi, Yi),
i = 0, 1, . . . , P , and g = g2 on the intervals inbetween, (Yi, Xi+1), i =
0, 1, . . . , P − 1; outside of the interval (x0, x1), g vanishes. By Lemma 7,

G =

∫ x+1

x

g =

∫ x+p

x

g1 +

∫ x+1

x+p

g2 = pg1 + (1 − p)g2. (32)

Either g1 = g2 = G or g1 < G < g2. The first case implies that g ≡ G on
[x0, x1 + 1]. This implies that f does not only have support in X0, X1, . . .,
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XP−1, but by reasoning for the mirror image (v, h) it also implies that f has
support in Y0, Y1, . . . , YP−1 = x1. This is impossible. Hence g1 < G < g2.
The support of f on (x0 − 1, x1 + 2) is now seen be to limited to the set
given in the statement of the Theorem.

Thus we conclude that f is a sum of delta functions, but we still have
to determine the weights ai and bi. Since f = 0 on (x0 − 1, x0), we have
g1 = g(x0+) = f(x0). Here we abuse notation, and write f(x) for the weight
of the Dirac delta function at x. Now we have the following recurrence
relations:

f(Xi) + f(Yi) = g2,

f(Yi) + f(Xi+1) = g1,

for i = 0, 1, . . . , P − 1. Solving this system we obtain

f(Xi) = f(X0) − i(g2 − g1) = g1 − i(g2 − g1),

f(Yi) = (i+ 1)(g2 − g1).

In addition, since x1 = YP−1, f(x1) = P (g2 − g1). On the other hand,
g1 = h(T − x1 − 1) = f(x1). This implies

g2 =
P + 1

P
g1.

To conclude,

ai = f(Xi) =
(

G− i

P

)

g1,

and

bi = f(Yi) =
i+ 1

P
g1.

By Lemma 7,

pg1 + (1 − p)
P + 1

P
g1 = G,

which yields

p = P
(

1 − G

g1

)

+ 1.

Solving for g1 now yields all required results.

As we will see in the next Section, the contact set of u is connected
in many important cases. Hence Theorem 3 allows us to give concise ex-
pressions for g in cases that ωc is an interval of positive length (using the
Heaviside function H):

Corollary 3. If the contact set is an interval of positive length, then g
equals the explicit function

g(x;x0, x1, G) =










H(x− x0) −H(x− x1 − 1) if x1 − x0 ∈ N,

g1
(

H(x− x0) −H(x− x1 − 1)
)

+

+ (g2 − g1)
∑P

i=1

[

H(x−Xi) −H(x− Yi)
]

if x1 − x0 /∈ N.

(33)



24 Van der Heijden, Peletier, and Planqué

Here the coefficients g1,2 are computed from x0, x1, and G by (24), (25),
(30). and (31).

Figure 6 shows examples of both cases. For the remaining two cases of a
stationary point that has a single or no contact point, g is immediately
clear: with a single contact point,

g(x) =

{

m on [x0, x0 + 1],

0 otherwise,

for a suitable constant m ≥ 0, while when there is no contact then obviously
g ≡ 0.

x0 =X0Y0 X1Y1 X2Y2 X3Y3 =x1 X4Y4

0 T

G

g
(x

;x
0
,T

)

g1

g2

(a)

g
(x

;x
0
,T

)

x0=X0 X1 X2 x1 =X3 X4

0 T

G
(b)

Fig. 6. A generic picture of g(x;x0, T ) for T − x0 6∈ N (a) and for T − x0 ∈ N

(b). The light gray shaded areas represent the contributions of the individual delta
functions of the corresponding Radon measures f . As an example, in (b) f consists
of four Dirac deltas, all with mass G, at x0 = X0, x0 + 1 = X1, . . . , x0 + 3 = X3.
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7. The contact set is an interval

In order to extract more information on the right-hand side g and the
measure f than that given by Theorem 2 we study two cases. In the first
case we assume that the operator given by the left-hand side in (18) satisfies
a version of the classical comparison principle. In the second case we restrict
ourselves to global minimizers.

Definition 2. Let N be a (non)linear operator on U . N is said to satisfy
the comparison principle if for any [x0, x1] ⊂ [0, T ],

Nu1 ≤ Nu2,

u1(x0) ≤ u2(x0),

u1(x1) ≤ u2(x1),







=⇒ u1 ≤ u2 on [x0, x1].

See e.g. [9] or [17] for a general exposition. Operators of the type considered
here, i.e.

Nu := −2a(u)u′′ − a′(u)u′
2

+ b′(u),

may fail to satisfy the comparison principle for two reasons. First, the zero-
order term b′(u) need not be increasing in u; for instance, the operator
u 7→ −u′′ − u does not satisfy the comparison principle on any interval of
length 2π or more. In a slightly more subtle manner, the prefactor a(u) of
the second-order derivative may also invalidate the comparison principle;
see e.g. [9, Section 10.3] for an example.

We conjecture that the ‘true’ rod functions a and b given in (1) do not
give rise to a comparison principle: b′ is not monotonic, suggesting that on
sufficiently large intervals the principle will fail.

We first prove a lemma that will be used in both cases.

Lemma 10. Let u be a stationary point such that x1, x2 ∈ ωc. Assume that

(x1, x2) ∩ ωc = ∅.

Then
∫ x2

x1

u =

∫ x2+1

x1+1

u, (34)

and for any m ∈ (0, x2 − x1),

∫ x1+m

x1

u <

∫ x1+1+m

x1+1

u and

∫ x2

x2−m

u >

∫ x2+1

x2−m+1

u. (35)

Proof. Since (x1, x2) ∩ ωc = ∅,
∫ x1+m+1

x1+m

u > 0,
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for all m ∈ (0, x2 − x1), which implies

∫ x1+m+1

x1+1

u−
∫ x1+m

x1

u =

∫ x1+1

x1

u+

∫ x1+m+1

x1+1

u−
∫ x1+m

x1

u

=

∫ x1+m+1

x1+m

u > 0.

The other two assertions are handled similarly.

Theorem 4. Let u be a stationary point, and assume that

Nu := −2a(u)u′′ − a′(u)u′
2

+ b′(u) (36)

satisfies the comparison principle. Then ωc is connected.

Proof. We proceed by contradiction. Since ωc is closed, non-connectedness
implies the existence of x1, x2 ∈ ωc such that (x1, x2) ∩ ωc = ∅.

Set v = u− τu. Then v(x1) = v(x2) = 0 by Lemma 6,
∫ x2

x1

v = 0 by (34),
and

∫ x1+m

x1

v < 0 for all 0 < m < x2 − x1 (37)

by (35). Hence there exists an x̄ ∈ (x1, x2) such that v(x̄) = 0.

From (x1, x2) ∩ ωc = ∅ it follows that supp f ∩ (x1, x2) = ∅. Hence g =
∫ x

x−1 f is a decreasing function on (x1, x2) and τg is an increasing function
on this interval by previous arguments. Hence g−τg is a decreasing function
on (x1, x2). There are three possibilities, each leading to a contradiction with
the comparison principle.

Case 1: g ≥ τg on (x1, x2). On (x1, x̄),







Nu = g ≥ τg = Nτu,

u(x1) = τu(x1),

u(x̄) = τu(x̄).

By the comparison principle, u ≥ τu on (x1, x̄), i.e. v ≥ 0. But this contra-
dicts (37).

Case 2: there exists an x̃ such that g ≥ τg on (x1, x̃) and g ≤ τg on
(x̃, x2). If x̃ ≥ x1, the same argument applies. If x̃ < x̄, we consider (x̄, x2)
instead, and apply the same argument. Now we conclude v ≤ 0 on (x̄, x2).

But observe that from
∫ x̄

x1

v < 0 by (37) and
∫ x2

x1

v = 0 we have
∫ x2

x̄ v > 0,
which again implies a contradiction.

Case 3: g ≤ τg on (x1, x2). Again we obtain a contradiction from con-
sidering the interval (x̄, x2).
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For the second case we limit ourselves to global minimizers. The results
of this theorem do apply to the functions a and b given in (1).

Theorem 5. Let u be a minimizer. Assume that a and b are of class C1

and that a is strictly positive. Then ωc is connected.

Proof. As in the proof of Theorem 4 we assume that there exist x1, x2 ∈ ωc

with (x1, x2) ∩ ωc = ∅ to force a contradiction. Then

supp f ∩ (x1, x2) = ∅, (38)

and hence g is a decreasing function on (x1, x2), and an increasing function
on (x1 + 1, x2 + 1). Now consider the following two new functions

v(x) =







u(x) on [0, x1],

u(x+ 1) on [x1, x2],

u(x) on [x2, T ],

and

w(x) =







u(x) on [0, x1 + 1],

u(x− 1) on [x1 + 1, x2 + 1],

u(x) on [x2 + 1, T ].

Both are admissible, i.e. v, w ∈ K: they are continuous by Lemma 6, imply-
ing that v, w ∈ X , and the fact that Bv,Bw ≥ 0 follows from Lemma 10.
In fact we need certain strict inequalities, which we derive after introducing
some notation.

The functions v and w are minimizers. To show this, write

F (u|[x1,x2]) =

∫ x2

x1

[

a(u)u′
2

+ b(u)
]

.

Then since u is a minimizer, and since u and v only differ on [x1, x2],

F (u|[x1,x2]) ≤ F (v|[x1,x2]) = F (u|[x1+1,x2+1]),

and similarly

F (u|[x1+1,x2+1]) ≤ F (w|[x1+1,x2+1]) = F (u|[x1,x2]).

This implies that
F (u|[x1,x2]) = F (u|[x1+1,x2+1]),

and that F (u) = F (v) = F (w). Every minimizer is also a stationary point,
and hence for v and w there exist positive Radon measures fv and fw such
that supp fv ⊂ ωc(v) and supp fw ⊂ ωc(w). We also denote gv(x) =

∫ x

x−1 fv

and gw(x) =
∫ x

x−1 fw.
For any x ∈ (x1, x2),

∫ x+1

x

u > 0. (39)
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Let first x2 ≥ x1 + 1. Then for any x ∈ (x1 − 1, x1),

∫ x+1

x

v =

∫ x1

x

v +

∫ x+1

x1

v

=

∫ x1

x

u+

∫ x+2

x1+1

u

>

∫ x1

x

u+

∫ x+1

x1

u by Lemma 10

=

∫ x+1

x

u ≥ 0.

For any x ∈ (x1, x2 − 1) the same is true:

∫ x+1

x

v =

∫ x+2

x+1

u > 0,

since x+1 < x2, which allows us to use (39). Now let x2 < x1 +1. Then for
any x ∈ (x1−1, x2−1), we can repeat the first argument above to conclude

∫ x+1

x

v > 0.

Combining these statements we find

∫ x+1

x

v > 0 for all x ∈ (x1 − 1, x2 − 1),

which implies ωc(v)∩(x1−1, x2−1) = ∅. Hence supp fv∩(x1−1, x2−1) = ∅.
But since u and v conincide on [0, x1], we have gv|[0,x1] = gu|[0,x1], so that
supp fu∩(x1−1, x2−1) = ∅. Combined with (38), this implies that gu|[x1,x2]

is constant. By symmetry the same is true for gu|[x1+1,x2+1]. Note that if
x2 > x1 + 1, then the overlap implies that the two constants are the same;
for the other case we now prove this.

Define z = u− τu; the function z solves the equation

− 2a(u)z′′ = gu − τgu + {a′(u)u′2 − a′(τu)(τu)′
2}

− {b′(u) − b′(τu)} + {2a(u) − a(τu)}(τu)′′ (40)

on the interval (x1, x2). Of the right-hand side, we have seen above that
the term gu − τgu is constant on (x1, x2); let us suppose it non-zero for the
purpose of contradiction. The function z is of class C1, and both z and z′

vanish at x = x1,2. Therefore the assumed regularity on a and b implies
that the expressions between braces are continuous on [x1, x2] and zero at
x = x1,2. The sign of the right-hand side of (40) is therefore determined
by gu − τgu, and most importantly, is the same at both ends x1 and x2;
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therefore the sign of z, at x = x1+ and x = x2−, is also the same. This
contradicts the following consequence of Lemma 10:

∫ x1+m

x1

z < 0 and

∫ x2

x2−m

z > 0 for all 0 < m < x2 − x1.

This leaves gu = τgu on (x1, x2). But then, by uniqueness of the initial-
value problem, u(x) = u(x + 1) for all x ∈ [x1, x2], and [x1, x2] ⊂ ωc,
contrary to our assumption that (x1, x2) ∩ ωc = ∅.

8. Symmetry

In the introduction we raised the question whether the stationary points
or minimizers inherit the symmetry of the formulation, or to put it differ-
ently, whether non-symmetric solutions exist.

For the discussion of this question it is useful to introduce an equivalent
formulation of the Euler-Lagrange equation (18) similar to the Hamiltonian-
systems formulation used in the proof of Theorem 1. For the length of this
section we assume that Theorem 3 applies and therefore that there is a
single contact interval [x0, x1].

By multiplying (18) with u′ and integrating one finds that the function
H , defined by

H := −a(u)u′2 + b(u) − gu, (41)

is piecewise constant, and that H and g jump at the same values of x. The
function g takes three values on [0, T ], these being the values g1 and g2
introduced in Theorem 3, and the value g0 = 0 outside of the extended
contact interval [x0, x1 + 1]. (Note that g1 and g2 may be equal). We claim
that H also takes three values, H0, H1, and H2, and that these values
correspond to those of g, i.e. that the pair (g,H) takes three values (0, H0),
(g1, H1), and (g2, H2) (although it may happen that (g1, H1) = (g2, H2)).

To prove this claim, first consider the case of p > 0, where p is defined
as in (24). Then

u|(x0,x0+p) ≡ u|(x0+1,x0+1+p) and g|(x0,x0+p) ≡ g|(x0+1,x0+1+p)

by Lemma 6 and (29). Therefore H is the same on these two intervals.
Repeating this argument for all subintervals of [x0, x1 +1] of the form (x0 +
k, x0 +k+p) and (x0 +k+p, x0 +k+1) we find that H takes two values on
the interval [x0, x1 +1], H1 and H2, and that these coincide with the values
g1 and g2 of g.

When p = 0, a similar argument yields that H takes only one value on
[x0, x1 + 1] (as does g).

A consequence of this characterization of H is the following lemma:
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Lemma 11. Under the conditions and notation of Theorem 3,

u(x0) = u(x0 + p) = u(x0 + 1) = u(x0 + 1 + p) = · · · = u(x1 + 1).

Proof. When p = 0 the statement follows from Lemma 6. For p > 0, note
that at any of the interior jump points, i.e. at all jump points except x0

and x1 + 1, we have [H ] = −[g]u where [H ] = ±(H2 − H1) and [g] =
±(g2−g1). Regardless of the sign this equation has only one solution u. For
the remaining two points x0 and x1 + 1 the result follows from Lemma 6.

We still need to show that the value of H is the same on both sides of
the extended contact interval [x0, x1 + 1], so that we can define the value
H0 unambiguously. If one of the ends of this interval equals 0 or T there is
nothing to prove; we therefore assume that min{x0, T − x1 − 1} ≥ d > 0.
Now multiply (18) with the function

v(x) =











x
du

′(x) 0 < x < d

u′(x) d ≤ x ≤ T − d
T−x

d u′(x) T − d < x < T,

and integrate to find

−1

d

∫ d

0

H +
1

d

∫ T

T−d

H = 0.

Since H is constant on (0, d) and on (T − d, T ) the two constant values are
equal; we then define H0 to be this value.

We now turn to the implications of this characterization of solutions
(u, g) and the associated pseudo-Hamiltonian function H .

Theorem 6. Let u be a stationary point with a single contact interval [x0, x1].
Let p be given as in (24), and define the set of jump points J = {x0, x0 +
p, x0 + 1, x0 + 1 + p, . . . , x1 + 1}.
1. There exists α ∈ R such that at any x ∈ J , u′(x) = ±α.

Now assume that b is non-decreasing on [1,∞).

2. If the operator N given in (36) satisfies the comparison principle, then
u is symmetric on [0, T ].

3. If u is a minimizer with u′(x0) = −u′(x1 + 1), then u is symmetric on
[0, T ].

Proof. For the first part write

u′2 =
b(u) − gu−H

a(u)
,

and note that by the proof of Lemma 11 the sum gu+H is continuous.
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For the second part, note that by Lemma 11 u has the same value on
each end of the interval [x0, x0 + p] (if p > 0) or [x0, x0 + 1] (if p = 0). By
the uniqueness that follows from the comparison principle the function u is
symmetric on this interval. By repeating this argument over all subintervals
of [x0, x1 + 1] we find that u is symmetric on [x0, x1 + 1].

The functions u1(t) := u(x0 − t) and u2(t) := u(x1 + 1 + t), therefore,
have the same zeroth and first derivatives at t = 0; they satisfy the same
equation (41) (note that H is symmetric on [x0, x1 + 1]); therefore the two
functions are equal as long as they both exist. This implies that lack of
symmetry must stem from a difference in domain of definition of u1 and u2

for t > 0.
We claim that neither u1 nor u2 has an interior maximum. Assuming

this claim, the assertion of the theorem follows since the monotonicity of
u1,2 then implies that the boundary condition u1,2(t) = 1 has at most one
solution t.

Now assume that u1 has a maximum at t1 > 0. The function u1 is
solution of the Hamiltonian system (41), where H and g are constant for
t > 0. As in the proof of Theorem 1, therefore u1(t1) > 1. Choose a bounded
interval I ⊂ [0,∞) such that u > 1 on Int I and u(∂I) = 1.

The reduced functional F̃ (v) =
∫

I
[a(v)v′

2
+ b(v)] has a global minimizer

ṽ in the class of functions v satisfying v(∂I) = 1. From studying the pertur-
bation v 7→ min{v, 1} and using the monotonicity of b it follows that ṽ ≤ 1
on I. By the comparison principle this is the only stationary point of F̃ , a
conclusion that contradicts the fact that u1 is a different stationary point.

For the third part, first note that the support of the continuous function

x 7→
∫ x+1

x
u is [x0, x1]; therefore

for every ǫ > 0 there exists δ > 0 such that any perturbation v with
d(supp v, [x0, x1 + 1]) > ǫ is admissible provided ‖v‖L∞ < δ.

We will use this below.
The assumption on the derivatives places us in the same position as

above: the functions u1(t) := u(x0 − t) and u2(t) := u(x1 + 1 + t) are equal
as long as they both exist. Again we will show that neither may have an
interior maximum, but by a different argument.

Assume that u1 has a maximum. By defining t1 = x0 the boundary
condition on u takes the form u1(t1) = 1. Pick

max{1, u1(0)} < β < max{u1(t) : 0 ≤ t ≤ t1}
and define the set S = {t ∈ [0, t1] : u1(t) ≥ β}; we can assume that for
ǫ = inf S > 0 we have max{u1(t) : 0 ≤ t ≤ t1} − β < δ for the associated δ
given above.

Now define v(t) = min{β, u1(t)}. The function v is admissible by con-
struction; it differs from u1 only on the set S, and therefore the difference
in energy is given by (with a slight abuse of notation)

F (v) − F (u1) =

∫

S

[

−a(u1)u
′
1
2

+ b(β) − b(u1)
]

< 0.
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This contradicts the assumption of minimality.

The conditions of Theorem 6 are quite sharp. We demonstrate this with
two examples.

Example 1: b is decreasing on [1, ∞). It is relatively straightforward
to construct a non-symmetric stationary point by choosing an appropriate
function b that is decreasing on [1,∞), thus showing that part 2 of Theo-
rem 6 is sharp.

Take a symmetric stationary point u for which u ≤ 1 on [0, T ], u′(T ) > 0,
and for which the contact set is bounded away from x = T (see the next
section for examples). Close to x = T , the function u satisfies

u′
2

=
b(u) −H

a(u)

for some H ∈ R, and since u′(T ) > 0, b(1) > H . Now change b(u) for u > 1
such as to have (for instance) b(2) = H , and continue the solution u past
x = T . By construction u(T+T̃ ) = 2, for some T̃ > 0, and u′(T+T̃ ) = 0; by
symmetry then u(T + 2T̃ ) = 1. The new function u defined on the domain
[0, t+ 2T̃ ] is a non-symmetric stationary point (Figure 7).

1

0 T T + 2T̃

Fig. 7. A non-symmetric stationary point can be constructed by defining b(u)
appropriately for u > 1.

Example 2: equal (non-opposite) derivatives on ∂ωc. For cer-
tain functions b and domains [0, T ] global minimization favours breaking of
symmetry. We demonstrate this for the functional

F (u) =

∫

[

u′
2
+ α(1 − u2)2

]

,

where α will be chosen appropriately. We consider the functional F on
functions u : [0, 1] → R with boundary conditions u(0) = u(1) = 0; although
this is slightly different from the setup in the rest of the paper, it simplifies
the argument, and the extension to a more general situation is intuitively
clear.
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We will show that

inf

{

F (u) :

∫

u ≥ 0

}

< inf

{

F (u) :

∫

u ≥ 0 and u is symmetric

}

. (42)

The infimum on the right-hand side is bounded from below,

F (u) ≥ (1 − αc/2)

∫

u′
2

+ α,

by the Poincaré inequality

∫ d

0

u2 ≤ cd2

∫ d

0

u′
2

for all u with u(0) = 0 and

∫

u = 0. (43)

The function v(x) = a+ cos(b(1− x/d)) is optimal in this inequality, where
a ≃ 0.22 and b ≃ 4.49 are determined by the boundary condition v(0) = 0
and the integral condition

∫

v = 0. The Poincaré constant equals c ≃ 0.0495.
Note that for symmetric functions u we may take d = 1/2.

At the function w(x) = sin 2πx the functional F has the value F (w) =
2π2 + 3α/8. For all α ∈ (16π2/5, 2/c] ≃ (31.6, 40.3] therefore

F (w) = 2π2 + 3α/8 < α ≤ inf

{

F (u) :

∫

u ≥ 0 and u is symmetric

}

,

which demonstrates (42).

The reason for this preference for asymmetry can be recognized in the
constant in the Poincaré inequality (43) (see Figure 8). For symmetric func-
tions the relevant class is {u : [0, 1/2] → R : u(0) =

∫

u = 0}, and for more
general functions {u : [0, 1] → R : u(0) = u(1) =

∫

u = 0}. For this latter
class the Poincaré coefficient is achieved by the function w above with the
value c = 1/4π2 ≃ 0.0253, which is larger than c(1/2)2 = 0.0124.

Fig. 8. Under symmetry conditions the effective domain, the domain on which
∫

u = 0, is half the actual domain size. Equivalently, more (costly) oscillations are
necessary.
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9. Numerical simulations

In this section we describe in detail our numerical simulations of sta-
tionary points of F under constraint, i.e. of solutions of

− 2a(u)u′′ − a′(u)u′
2

+ b′(u) =

∫ x

x−1

f, (44)

u(0) = u(T ) = 1, (45)

supp f ⊂ ωc, (46)

f a positive Radon measure, (47)
∫ x+1

x

u ≥ 0 ∀x ∈ [0, T − 1]. (48)

We concentrate on the case in which the solution is symmetric and the
contact set is non-empty, and we use the fact that the right-hand side in the
differential equation can be characterised explicitly (see (33)). We further
simplify by replacing the inequality (48) by the condition that the function

x 7→
∫ x+1

x
u has a second-degree zero at x = x0, leading to the new system

in the unknowns (u, x0, G)

− 2a(u)u′′ − a′(u)u′
2
+ b′(u) = g(x;x0, T − x0 − 1, G), (49)

u(0) = u(T ) = 1, (50)

u(x0) = u(x0 + 1), (51)
∫ x0+1

x0

u = 0. (52)

For brevity we shall write ḡ(x;x0, T,G) for g(x;x0, T − x0 − 1, G).

Lemma 12. Assume that the operator on the left-hand side of (49) satisfies
the comparison principle. Then any solution of problem (44-48) with non-
empty contact set is also a solution of (49-52); vice versa, any solution
of (49-52) is also a solution of (44-48).

Proof. Since the implication (44-48) =⇒ (49-52) follows by construction,
it suffices to show the opposite implication; in fact, since an admissible
measure f can be constructed from any ḡ(x;x0, T,G), it is sufficient to
show that solutions of (49-52) satisfy

∫ x+1

x

u ≥ 0 ∀x ∈ [0, T − 1].

We show slightly more, namely that

∫ x+1

x

u = 0 ∀x ∈ [x0, T − x0 − 1]



Self-contact for rods on cylinders 35

and that
∫ x+1

x

u > 0 ∀x /∈ [x0, T − x0 − 1].

The function u is symmetric by Theorem 6. Since u(x0) = u(x0 + 1),

u(x0) = u(x0 + 1) = u(T − x0) = u(T − x0 − 1) =: ū.

Set u1(x) = u(x0 +x), and u2(x) = u(x0 +x+1) for all x ∈ [0, T −2x0−1].
By construction, ḡ(x;x0, T,G) = ḡ(x+1;x0, T,G) for all x ∈ [x0, T−x0−1].
Hence, if we set h(x) = ḡ(x+ x0;x0, T,G), for all x ∈ [0, T − 2x0 − 1], then
u1 and u2 both satisfy

−2a(v)v′′ − a′(v)v′
2

+ b′(v) = h,

v(0) = v(T − 2x0 − 1) = ū,

By uniqueness, u1 = u2 on [0, T − 2x0 − 1]. In terms of u this means
u(x) = u(x+ 1) for all x ∈ [x0, T − x0 − 1]. But that implies that

∫ x+1

x

u = 0 ∀x ∈ [x0, T − x0 − 1].

It remains to be shown that

∫ x+1

x

u > 0 ∀x /∈ [x0, T − x0 − 1]. (53)

By symmetry we only show this for x < x0. Let up and gp be the 1-periodic

extrapolation of u|[x0,x0+1] and g|[x0,x0+1]; note that
∫ x+1

x
up = 0 for every

x. For x < x0,

−2a(u)u′′−a′(u)u′2+b′(u) = 0 < gp = −2a(up)u
′′
p−a′(up)u

′
p
2
+b′(up), (54)

implying that u > up for x = x0− and therefore also (53) for x = x0−.
If u and up intersect again at some x̃ < x0, then the comparison principle
and (54) imply that u ≤ up on [x̃, x0], in contradiction with the previous
statement. This concludes the proof.

We discuss two different ways of calculating solutions of the problem (49-
52).

9.1. Continuation

We implemented a strategy of continuation of solutions, using the con-
tinuation package AUTO [7], and we chose the simple case

a(u) =
1

2
, b(u) =

1

2
(u+ 1)2. (55)
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To implement system (49-52) in AUTO, we divide [0, T ] into three subdo-
mains, [0, x0], [x0, x0 + 1] and [x0 + 1, T ] and specify the equations

−u′′1(x1) + u1(x1) + 1 = ḡ(x1;x0, T,G)

x′1 = 1

}

on [0, x0], (56)

−u′′2(x2) + u2(x2) + 1 = ḡ(x2;x0, T,G)

x′2 = 1

}

on [x0, x0 + 1], (57)

−u′′3(x3) + u3(x3) + 1 = ḡ(x3;x0, T,G),

x′3 = 1

}

on [x0 + 1, T ], (58)

with boundary conditions

u1(0) = 1,

u1(x0) = u2(x0), u
′
1(x0) = u′2(x0),

u2(x0) = u3(x0), u
′
2(x0) = u′3(x0), (59)

u3(T ) = 1,

u2(x0) = u2(x0 + 1),

x1(0) = 0, x2(x0) = x0, x3(x0 + 1) = x0 + 1.

and integral condition
∫ x0+1

x0

u2 = 0. (60)

Note that in (56)–(58) we have added trivial equations in order to solve for
the xi variables, which are required in the evaluation of ḡ(x;x0, G, T ).

There are still some technicalities that have to be overcome: AUTO is not
well-equipped to handle systems with a discontinuous right-hand side, such
as the function g(x;x0, G, T ) that is supplied here. We remedy this by using
a low-order method for all simulations, and we smooth the function g given
in (33) by substituting arctans for Heaviside functions:

g̃(x;x0, T,G) =










g1

π

(

arctan(A(x− x0)) − arctan(A(x − T − x0))
)

if T − 2x0 /∈ N,

+ (g2−g1)
π

∑P
i=1

[

arctan(A(x −Xi)) − arctan(A(x − Yi))
]

,
1
π

(

arctan(A(x− x0)) − arctan(A(x − T − x0))
)

if T − 2x0 ∈ N,

where Xi and Yi are as in (28). In the limit A→ ∞, g̃(x;x0, T,G) converges
pointwise to ḡ(x;x0, T,G).

There are nine differential equations with ten boundary conditions and
one integral condition. This means that we expect to specify three free
parameters to obtain a one-parameter curve of solutions. These are T , x0,
and an additional parameter β. It worked well to choose the freedom in β
in modulating the values of g1,2:

g̃1 = g1 + β and g̃2 = g2 + β.
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One may prove a priori that β = 0 by remarking that

∫ x0+1

x0

g̃ =

∫ x0+1

x0

[

−u′′ + u+ 1
]

= 1,

and using (32) to find

1 =

∫ x0+1

x0

g̃ = p(g1 + β) + (1 − p)(g2 + β) = 1 + β.

We have found no other role for β than to accommodate for small numerical
inaccuracies due to the discontinuous right-hand side. In all simulations
β ≃ 10−4.

We have validated the code by comparing solutions from AUTO with
explicit solutions. An example is given in Figure 9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

x

Fig. 9. A comparison of a solution of system (56)–(60) produced with AUTO (◦
symbols) to an explicit solution, for a generic value of T (here scaled to 1): T =
4.91635. In this simulation A = 1000.

As we have seen in the discussion at the beginning of this Section, as T
becomes larger the minimizer u has to have a contact point, and for large
enough values even a full interval of contact. The point x0, the leftmost point
of contact, is determined as part of the solution; one may wonder how this
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point depends on T . For operators N that satisfy the comparison principle,
it is straightforward to prove that x0 remains bounded for all T . Moreover,
for the operator under consideration here, as T → ∞, x0 → log(2 +

√
3).

These two phenomena are illustrated in Figure 10.

4 6 8 10 12 14 16 18
1.26

1.27

1.28

1.29

1.3

1.31

1.32

1.33

x0

T
Fig. 10. Behaviour of x0 as a function of domain size T for system (56)–(60)

computed with AUTO. As T grows, x0 remains bounded and converges to log(2+
√

3)
(horizontal line).

Since |g1 − g2| → 0 as P (and therefore T ) increases, g becomes con-
stant in the limit of large T . By the comparison principle, u does the same,
implying that F (u)/T → 1. The start of the convergence to 1 is shown in
Figure 11.

9.2. Directly solving the boundary-value problem

Computing solutions of the rod equations—rather than the simpler prob-
lem (55)—using AUTO has proved difficult, for reasons that we do not un-
derstand well. Instead, a boundary-value problem solver from Matlab was
used to create Figure 3. Set

Lu = − 2u′′

4π2(1 + u2)
5

2

+
5uu′

2

4π2(1 + u2)
7

2

− 3u

r2(1 + u2)
5

2

+
α

(1 + u2)
3

2

.
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1.125
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(u

)
−

T
/
2

T

Fig. 11. Behaviour of F (u) − T/2 as a function of domain size T for system
(56)–(60) computed with AUTO. As T grows, F (u) − T/2 oscillates towards 1, the
energy of u ≡ 0 on a unit length interval.

To find a solution of

Lu = g(x;x0, T,G), u(x0) = u(x0 + 1),

∫ x0+1

x0

u = 0,

for a generic value of T (large enough) we construct a two-parameter shoot-
ing problem. Fix G and x0 and consider the boundary-value problem

Lu1 = 0 on [0, x0],

Lu2 = g1 on [x0, x0 + p],

Lu3 = g2 on [x0 + p, x0 + 1],

Luu = g1 on [x0 + 1, x0 + 1 + p],

Lu5 = 0 on [x0 + 1 + p, T̃ ],



























(61)
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with boundary conditions

u1(0) = 1, (62)

u1(x0) = u2(x0), u
′
1(x0) = u′2(x0), (63)

u2(x0 + p) = u3(x0 + p), u′2(x0 + p) = u′3(x0 + p), (64)

u3(x0 + 1) = u4(x0 + 1), u′3(x0 + 1) = u′4(x0 + 1), (65)

u4(x0 + 1 + p) = u5(x0 + 1 + p), u′4(x0 + 1 + p) = u′5(x0 + 1 + p), (66)

u5(T̃ ) = 1. (67)

Here, as before, p ≡ T−2x0−1 (mod 1), P = min{n ∈ N : n ≥ T−2x0−1},
and

g1 =
GP

P + 1 − p
, g2 =

G(P + 1)

P + 1 − p
,

by Theorem 3. Note that this is not exactly the same problem as (49-50),
since the periodic section has been reduced from P periods to a single period,
and the solution is defined correspondingly on a smaller domain of length

T̃ = 2x0 + p+ 1.

This allows us to use the decomposition in five subdomains for any T , which
facilitates computation. This is illustrated in Figure 12.

T̃
T

u

T − 2x0 − p − 1

Fig. 12. Schematic picture of the idea behind T̃ = 2x0 + p + 1. Since u (solid
black line) is periodic between x0 and T −x0, we can cut out an interval of length

T − 2x0 − p − 1 and find the corresponding solution on [0, T̃ ].

We now vary x0 and G to find solutions of system (61)–(67) that satisfy

u2(x0) = u3(x0 + 1),

∫ x0+p

x0

u2 +

∫ x0+1

x0+p

u3 = 0,

using a standard Matlab boundary-value problem solver, bvp4c. An example
solution is drawn in Figure 3 in which we have used α = 1/2π, r = 1. Note
that all analysis in this paper assumes zero rod thickness; in Figure 3 the
rod has been artificially fattened for better viewing.
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ment of link and writhe for open rods. arXiv: math-ph/0310057, 2003.

14. G.H.M. van der Heijden and J.M.T. Thompson. Lock-on to tape-like be-
haviour in the torsional buckling of anisotropic rods. Physica D, 112:201–224,
1998.

15. J.H. Maddocks. Stability and folds. Arch. Rat. Mech. Anal., 99:301–328,
1987.

16. S. Neukirch and G.H.M. van der Heijden. Geometry and mechanics of uniform
n-plies: from engineering ropes to biological filaments. J. Elasticity, 69:41–72,
2002.

17. M.H. Protter and H.F. Weinberger. Maximum principles in differential equa-
tions. Prentice-Hall, 1967.

18. F. Schuricht and H. von der Mosel. Characterization of ideal knots. Calculus
Variations, 19:281–315, 2004.

19. F. Schuricht and H. von der Mosel. Euler-Lagrange equations for nonlinearly
elastic rods with self-contact. Arch. Rat. Mech. Anal., 168:35–82, 2003.

20. D.M. Stump and G.H.M. van der Heijden. Birdcaging and the collapse of rods
and cables in fixed-grip compression. Int. J. Solids and Structures, 38:4265–
4278, 2001.

21. J.M.T. Thompson, G.H.M. van der Heijden, and S. Neukirch. Supercoiling
of DNA plasmids: mechanics of the generalized ply. Proc. R. Soc. London,
Series A, 458:950–985, 2002.

22. I. Tobias, D. Swigon, and B.D. Coleman. Elastic stability of DNA configura-
tions I. general theory. Physical Review E, 61:747–758, 2000.



42 Van der Heijden, Peletier, and Planqué
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